If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 5 + -2[x + -2(x + -1)] = 55 + -4[x + -3(x + 2)] Reorder the terms: 5 + -2[x + -2(-1 + x)] = 55 + -4[x + -3(x + 2)] 5 + -2[x + (-1 * -2 + x * -2)] = 55 + -4[x + -3(x + 2)] 5 + -2[x + (2 + -2x)] = 55 + -4[x + -3(x + 2)] Reorder the terms: 5 + -2[2 + x + -2x] = 55 + -4[x + -3(x + 2)] Combine like terms: x + -2x = -1x 5 + -2[2 + -1x] = 55 + -4[x + -3(x + 2)] 5 + [2 * -2 + -1x * -2] = 55 + -4[x + -3(x + 2)] 5 + [-4 + 2x] = 55 + -4[x + -3(x + 2)] Combine like terms: 5 + -4 = 1 1 + 2x = 55 + -4[x + -3(x + 2)] Reorder the terms: 1 + 2x = 55 + -4[x + -3(2 + x)] 1 + 2x = 55 + -4[x + (2 * -3 + x * -3)] 1 + 2x = 55 + -4[x + (-6 + -3x)] Reorder the terms: 1 + 2x = 55 + -4[-6 + x + -3x] Combine like terms: x + -3x = -2x 1 + 2x = 55 + -4[-6 + -2x] 1 + 2x = 55 + [-6 * -4 + -2x * -4] 1 + 2x = 55 + [24 + 8x] Combine like terms: 55 + 24 = 79 1 + 2x = 79 + 8x Solving 1 + 2x = 79 + 8x Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-8x' to each side of the equation. 1 + 2x + -8x = 79 + 8x + -8x Combine like terms: 2x + -8x = -6x 1 + -6x = 79 + 8x + -8x Combine like terms: 8x + -8x = 0 1 + -6x = 79 + 0 1 + -6x = 79 Add '-1' to each side of the equation. 1 + -1 + -6x = 79 + -1 Combine like terms: 1 + -1 = 0 0 + -6x = 79 + -1 -6x = 79 + -1 Combine like terms: 79 + -1 = 78 -6x = 78 Divide each side by '-6'. x = -13 Simplifying x = -13
| 6a+6a=12 | | 2x^2+64x-190=0 | | 3(w+2)=5W+26 | | 5r+4(1+r)=-6(-4r+7)+1 | | (3x+28)+(8x-12)=90 | | 25-2h=21 | | (3x+28)+(8x-12)=180 | | log(x/10^-2)=5.2 | | log^5(4x)=2 | | (5n)=5n^2 | | 4tan^2X-11tanX+6=0 | | 78=22+7j | | X-4-3x=4 | | (x+64)+(2x-10)=180 | | 2.5x+5=19 | | 5=-15-8u | | 3/2x9=0 | | 4x+0=40 | | 4=t/15-5 | | pi/3/2 | | 28+7=133 | | 5(4-x)=5x+20 | | 3-(x+2)=-12x | | 25500+2000y=47900-800y | | 5(14-X)=3(X-5) | | v/8+41=50 | | (x+54)+(2x-10)=90 | | 20/90 | | 28=4-2x | | 2y-4y=34-6y | | 12x^7y^8+4x^2y^3=-28x^8y^3+20x^5Y^9 | | 2/3•1/7 |